DOLFIN
DOLFIN C++ interface
BoostGraphOrdering.h
1// Copyright (C) 2012 Garth N. Wells
2//
3// This file is part of DOLFIN.
4//
5// DOLFIN is free software: you can redistribute it and/or modify
6// it under the terms of the GNU Lesser General Public License as published by
7// the Free Software Foundation, either version 3 of the License, or
8// (at your option) any later version.
9//
10// DOLFIN is distributed in the hope that it will be useful,
11// but WITHOUT ANY WARRANTY; without even the implied warranty of
12// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13// GNU Lesser General Public License for more details.
14//
15// You should have received a copy of the GNU Lesser General Public License
16// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
17//
18// First added: 2012-07-06
19// Last changed: 2012-11-12
20
21#ifndef __DOLFIN_BOOST_GRAPH_ORDERING_H
22#define __DOLFIN_BOOST_GRAPH_ORDERING_H
23
24#include <set>
25#include <utility>
26#include <vector>
27#include "Graph.h"
28
29namespace dolfin
30{
31
33
35 {
36
37 public:
38
41 static std::vector<int> compute_cuthill_mckee(const Graph& graph,
42 bool reverse=false);
43
46 static std::vector<int>
47 compute_cuthill_mckee(const std::set<std::pair<std::size_t, std::size_t>>& edges,
48 std::size_t size, bool reverse=false);
49
50 private:
51
52 // Build Boost undirected graph
53 template<typename T, typename X>
54 static T build_undirected_graph(const X& graph);
55
56 // Build Boost directed graph
57 template<typename T, typename X>
58 static T build_directed_graph(const X& graph);
59
60 // Build Boost compressed sparse row graph
61 template<typename T, typename X>
62 static T build_csr_directed_graph(const X& graph);
63
64 };
65
66}
67
68#endif
This class computes graph re-orderings. It uses Boost Graph.
Definition: BoostGraphOrdering.h:35
static std::vector< int > compute_cuthill_mckee(const Graph &graph, bool reverse=false)
Definition: BoostGraphOrdering.cpp:35
Definition: adapt.h:30
std::vector< graph_set_type > Graph
Vector of unordered Sets.
Definition: Graph.h:39